Material Data Sheet

EOS Stainless-Steel 316L

High performance marine-grade stainless steel

EOS StainlessSteel 316L

EOS StainlessSteel 316L is a high performance marine-grade austenitic stainless steel that is molybdenum alloyed for enhanced corrosion resistance in chloride environments. 316L is a standard material for numerous applications in process, energy, paper, transportation and other industries. EOS StainlessSteel 316L is a stainless steel powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

Main Characteristics:

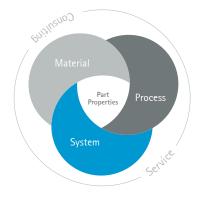
→ High ductility and toughness

→ High strength

→ High corrosion resistance

Typical Applications:

→ Chemical industry


→ Food processing

→ Medical devices

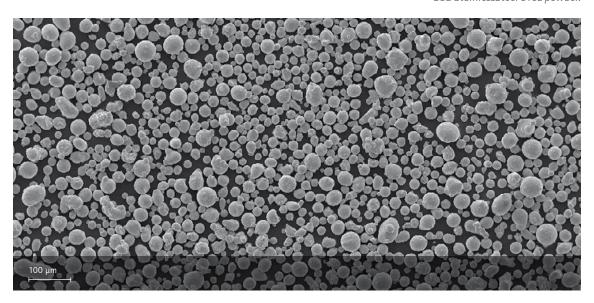
The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process – together simply described as the Quality Triangle. EOS focuses on delivering reproducible part properties for the customer.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

The chemical composition of EOS StainlessSteel 316L corresponds to ASTM F138 material standard for Surgical Implants (UNS S31673).


Powder chemical composition (wt.-%)

Element	Min.	Max.
Fe	Bal	ance
Cr	17.00	19.00
Ni	13.00	15.00
Мо	2.25	3.00
С	-	0.03
N	-	0.10

Powder particle size

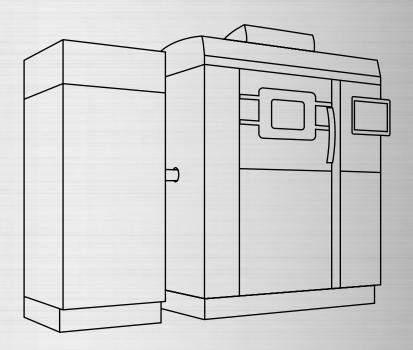
Generic particle size distribution 20 – 65 µm
--

SEM picture of EOS StainlessSteel 316L powder.

Heat Treatment

Stress relieve: Hold temperature 900 C, hold time minimum 2 h when throughly heated, water quenching or high speed gas quenching. Cooling rate to be high enough to prevent chromium carbide precipitation.

Solution annealing: Hold temperature 1150 C, hold time minimum 1,5 h when throughly heated, water quenching or high speed gas quenching. Cooling rate to be high enough to prevent chromium carbide precipitation.


Microstructure solution annealed Etched with etchant Kallings 2

Coefficient of Thermal Expansion ASTM E228

Temperature	25-100 °C	25-200 °C	25-300 °C	25-400 °C
СТЕ	15.72 *10 ⁻⁶ /K	16.75 *10 ⁻⁶ /K	17.27 *10 ⁻⁶ /K	17.70 *10 ⁻⁶ /K

EOS StainlessSteel 316L for EOS M 290 | 20 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data

EOS StainlessSteel 316L for EOS M 290 | 20 μm

Process Information

This process product is optimized for robustly building parts with EOS M290 system using EOS StainlessSteel 316L. The mechanical properties have been validated to TRL9 level.

System set-up	EOS M 290	
EOSPAR name	316L_Surface	
Software requirements	EOSPRINT 2.7 or newer EOSYSTEM 2.11 or newer	
Powder part no.	9011-0032	
Recoater blade	EOS HSS blade	
Nozzle	Standard nozzle	
Inert gas	Argon	
Sieve	63 μm	

Additional information	
Layer thickness	20 μm
Min. wall thickness	0.3 - 0.4 mm
Typical dimensional change after HT	+0.02 %
Volume rate	2.0 mm³/s

Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

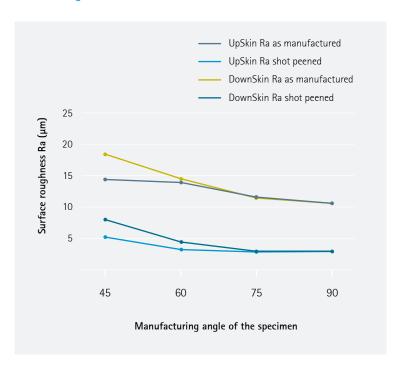
Micrograph of polished surface


Defects	Result	Number of samples
Average defect percentage	0.018 %	45
Density, ISO3369	Result	Number of samples
Average density	≥ 7.97 g/cm³	45

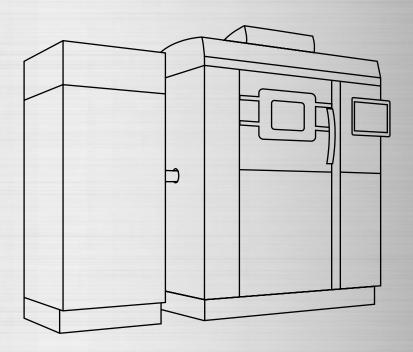
Mechanical Properties as Manufactured¹

Mechanical properties ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Number of samples
Vertical	480	560	49	363
Horizontal	540	645	38	246



T99: Tolerance intervals provide lower bounds where 99 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferable to other systems.


Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 290 | 40 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data

EOS StainlessSteel 316L for EOS M 290 | 40 μm

Process Information

This process product is optimized for building high quality parts with EOS M 290 system reliably using EOS StainlessSteel 316L. Mechanical properties have been validated to TRL7 level.

System set-up	EOS M 290	
EOSPAR name	316L_040_FlexM291	
Software requirements	EOSPRINT 2.7 or newer EOSYSTEM 2.11 or newer	
Powder part no.	9011-0032	
Recoater blade	EOS HSS blade	
Nozzle	EOS grid nozzle	
Inert gas	Argon	
Sieve	63 μm	

Additional information	
Layer thickness	40 μm
Min. wall thickness	0.1 mm
Typical dimensional change after HT	+0.2 %
Volume rate	3.7 mm³/s

Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

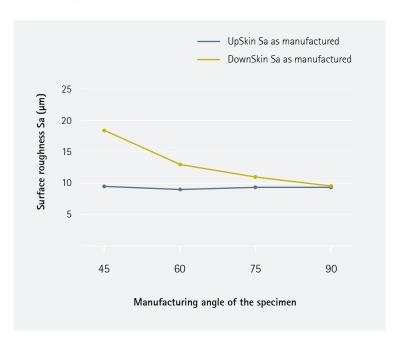
Micrograph of polished surface

Defects	Result	Number of samples
Average defect percentage	0.015 %	20
Density, ISO3369	Result	Number of samples
Average density	≥7.97 g/cm³	20

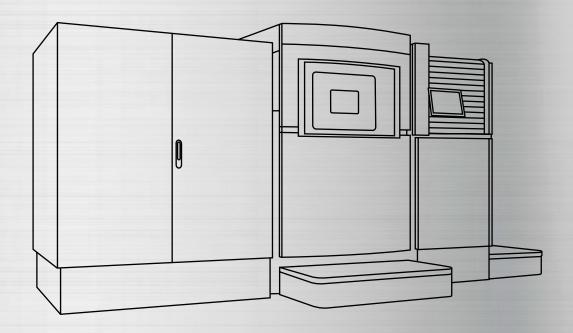
Mechanical Properties as Manufactured¹

Mechanical properties ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R_m [MPa]	Elongation at break A [%]	Number of samples
Vertical	490	580	49	162
Horizontal	530	630	41	72



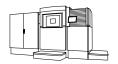
T95: Tolerance intervals provide lower bounds where 95 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferable to other systems.


Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 400-4 | 40 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data


EOS StainlessSteel 316L for EOS M 400–4 | 40 μm

Process Information

This process product is optimized for building high quality parts with EOS M 400-4 system using EOS StainlessSteel 316L.

System set-up	EOS M 400-4		
EOSPAR name	316L_040_FlexM404		
Software requirements	EOSPRINT 2.7 or newer EOSYSTEM 2.11 or newer		
Powder part no.	9011-0032		
Recoater blade	EOS HSS blade		
Inert gas	Argon		
Sieve	63 µm		

Additional information	
Layer thickness	40 μm
Volume rate	14.8 mm³/s

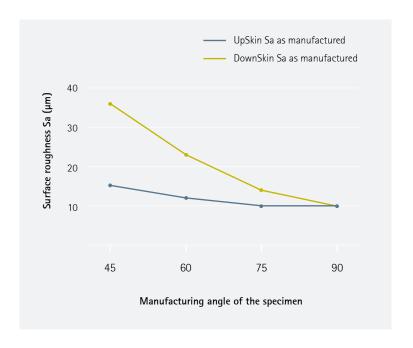
Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

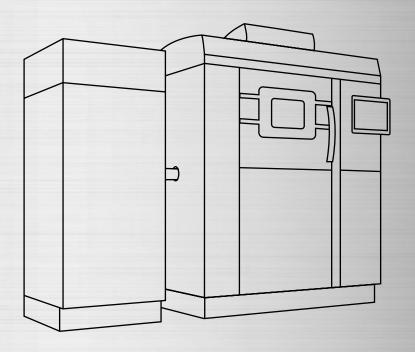
Micrograph of polished surface

Defects	Result	Number of samples
Average defect percentage	0.015 %	40
Density, ISO3369	Result	Number of samples
Average density	≥ 7.9 g/cm³	40

Mechanical Properties as Manufactured¹

Mechanical properties ISO6892-1


	Yield strength R _{p0.2} [MPa]	Tensile strength $R_{_{m}}$ [MPa]	Elongation at break A [%]	Number of samples
Vertical	490	590	45	120
Horizontal	550	650	40	96


T90: Tolerance intervals provide lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferable to other systems.

Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 290 | 40/80 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data

EOS StainlessSteel 316L for EOS M 290 | 40/80 μm

Process Information

This process product is optimized for flexible and fast production of EOS StainlessSteel 316L parts with the EOS M 290 system. The parameter set has three different layer thickness options that can all be utilized within the same build: 40 μ m, 80 μ m and 40/80 μ m Skin.

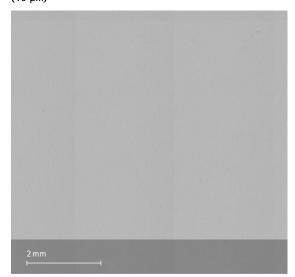
The 40 μ m parameter set is ideal for parts needing great detail resolution and more dense structure. The 80 μ m parameter set offers a build rate that is more than double that of the long established 40 μ m parameter set.

With the 40/80 μ m Skin parameter set, the total build time can be reduced with the same surface quality. The parameter sets are assigned to different sections in the same build job depending on the requirements.

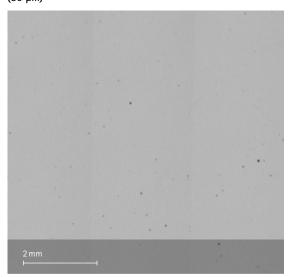
Main characteristics:

- Parameter set for fast and cost efficient production of EOS StainlessSteel 316L parts in small series or serial production
- → With 80 μm parameter 100 % increase in productivity compared to the 40 μm FlexLine parameter set
- Faster production without compromising the part quality

System set-up	EOS M 290	
EOSPAR name	316L_040_080_Core M291	
Software requirements	EOSPRINT 2.7 or newer EOSYSTEM 2.11 or newer	
Powder part no.	9011-0032	
Recoater blade	EOS HSS blade	
Nozzle	EOS grid nozzle	
Inert gas	Argon	
Sieve	63 μm	


Additional information	
Layer thickness	
Volume rate*	3.7 mm³/s (40 μm), 8.4 mm³/s (80 μm), 3.7 - 8.4 (40/80 μm Skin)

^{*} Volume rate depends on the part dimensions and skin thickness.



Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

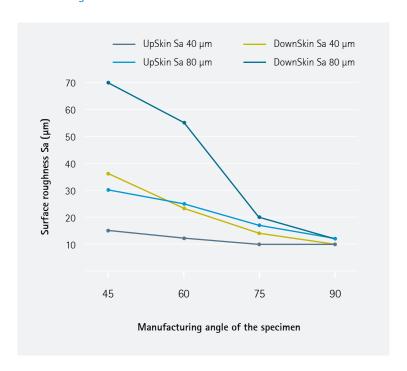
Micrograph of polished surface (40 μ m)

Micrograph of polished surface (80 μ m)

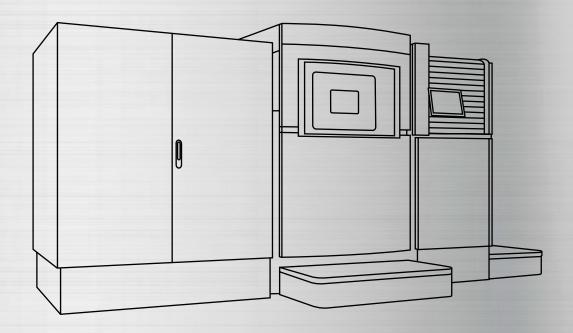
Defects	Result
Average defect percentage	0.1 %* (40 µm), < 0.2 %* (80 µm)

 $^{^*}$ Defect % varies with platform position.

Mechanical Properties as Manufactured¹



Typical properties as manufactured ISO 6892-1


	Yield strength R _{p0.2} [MPa]	Tensile strength	Elongation at break A [%]
40 μm horizontal	500	600	35
40 μm vertical	450	550	50
80 µm horizontal	500	600	35
80 μm vertical	450	550	45

Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 400-4 | 40/80 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data

EOS StainlessSteel 316L for EOS M 400-4 | 40/80 μm

Process Information

This process product is optimized for flexible and fast production of EOS StainlessSteel 316L parts with the EOS M 400-4 system. The parameter set has three different layer thickness options that can all be utilized within the same build: 40 μ m, 80 μ m and 40/80 μ m Skin.

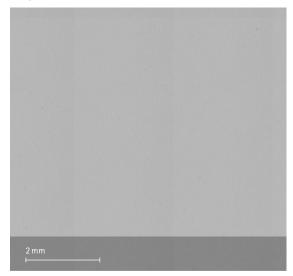
The 40 μ m parameter set is ideal for parts needing great detail resolution and more dense structure. The 80 μ m parameter set offers a build rate that is more than double that of the long established 40 μ m parameter set.

With the $40/80~\mu m$ Skin parameter set, the total build time can be reduced with the same surface quality. The parameter sets are assigned to different sections in the same build job depending on the requirements.

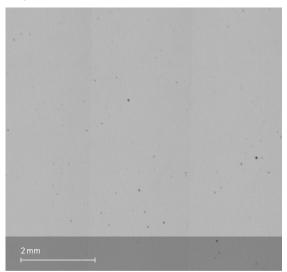
Main Characteristics:

- Parameter set for fast and cost efficient production of EOS StainlessSteel 316L parts in small series or serial production
- With 80 μm parameter 100 % increase in productivity compared to the 40 μm FlexLine parameter set
- Faster production without compromising the part quality

System set-up	EOS M 400-4	
EOSPAR name	316L_040_080_Core M404	
Software requirements	EOSPRINT 2.7 or newer EOSYSTEM 2.11 or newer	
Powder part no.	9011-0032	
Recoater blade	EOS HSS blade	
Inert gas	Argon	
Sieve	63 μm	


Additional information	
Layer thickness	40 μm, 80 μm & 40/80 μm Skin
Volume rate*	40μm: up to 4 x 3.7mm³/s 80μm: up to 4 x 8.4 mm³/s 40/80μm Skin: between 4 x 3.7 - 4 x 8.4 mm³/s

^{*} Volume rate depends on the part dimensions and skin thickness.



Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

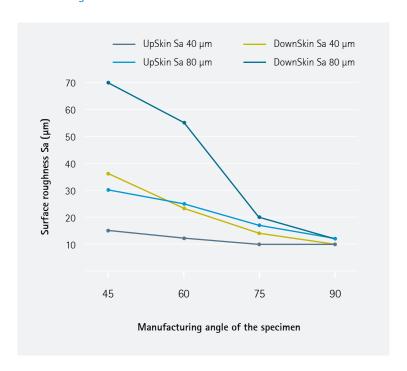
Micrograph of polished surface (40 μ m)

Micrograph of polished surface (80 μ m)

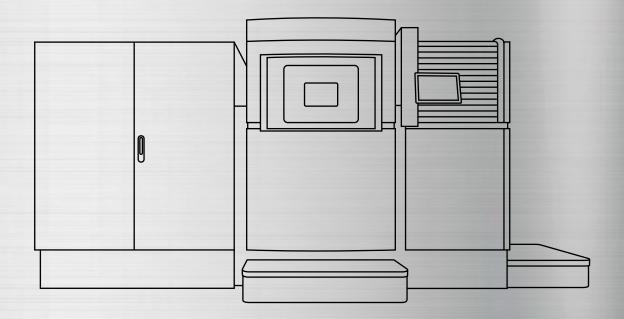
Defects	Result		
Average defect percentage	0.1 %* (40 µm), < 0.2 %* (80 µm)		

^{*} Defect % varies with platform position.

Mechanical Properties as Manufactured¹



Typical properties as manufactured ISO 6892-1


	Yield strength R _{p0.2} [MPa]	Tensile strength	Elongation at break A [%]
40 μm horizontal	500	600	35
40 μm vertical	450	550	50
80 µm horizontal	500	600	35
80 μm vertical	450	550	45

Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 400-1 | 80 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Mechanical Properties
Additional Data

EOS StainlessSteel 316L for EOS M 400-4 | 40/80 µm

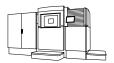
Process Information

Additional information

Typical dimensional change after HT

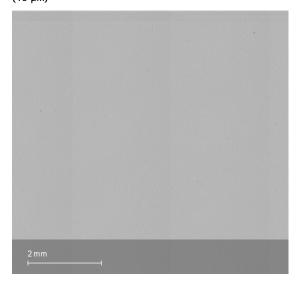
This process product is optimized for flexible and fast production of 316L parts with EOS M 400–1 system. The parameter set has three different layer thickness options that can all be utilized within the same build: $40\mu m$, $80~\mu m$ and $40/80~\mu m$ Skin. For high productivity needs a $80~\mu m$ parameter set is included with a build rate more than double the long established 40 μm parameter set. Both can be used separately for different parts or combined by using $40/80~\mu m$ Skin with faster $80~\mu m$ for the core of the part and higher quality $40~\mu m$ building for the surface of the part with defined thickness. Sectionioning parts in vertical direction for different parameters is also possible.

Main Characteristics:

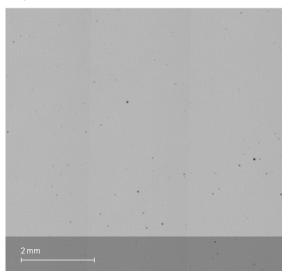

- Parameter set for fast and cost efficient production of EOS StainlessSteel 316L parts in small series or serial production
- Fast production achieved with only a minor decrease in quality

System set-up	EOS M 400-1
EOSPAR name	316L_040_080_Core M401
Powder part no.	9011-0032
Recoater blade	EOS HSS blade
Inert gas	Argon
Sieve	63 μm

Layer thickness 40 μm, 80 μm & 40/80 μm Skin 40μm: 3.7mm³/s 80μm: 8.4 mm³/s 40/80μm Skin: 3.7 - 8.4 mm³/s


+0.02 %

^{*} Volume rate depends on the part dimensions and skin thickness.



Chemical composition of built parts is compliant to EOS StainlessSteel 316L powder chemical composition.

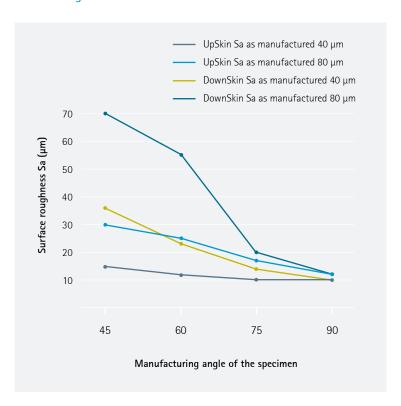
Micrograph of polished surface (40 μ m)

Micrograph of polished surface (80 μ m)

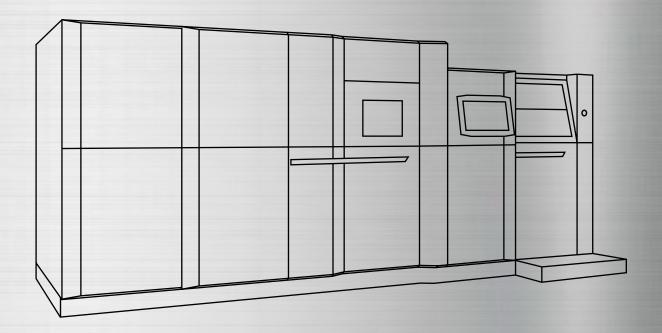
Defects	Result	
Average defect percentage	0.1 %* (40 μm), < 0.2 %* (80 μm)	

 $^{{\}it *Defect\,\%\,varies\,with\,platform\,position.}$

Mechanical Properties as Manufactured¹



Typical properties as manufactured ISO 6892-1


	Yield strength R _{p0.2} [MPa]	Tensile strength	Elongation at break A [%]
40 μm horizontal	570	670	35
40 μm vertical	500	600	45
80 µm horizontal	550	650	35
80 μm vertical	500	620	40

Additional Data¹

Surface Roughness

EOS StainlessSteel 316L for EOS M 300-4 | 40/80 μm

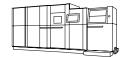
Process Information
Chemical and Physical Part Properties
Mechanical Properties

EOS StainlessSteel 316L for EOS M 300-4 | 40/80 μm

Process Information

This process product is optimized for flexible and fast production of EOS StainlessSteel 316L parts with the EOS M 300-4 system. The parameter set has three different layer thickness options that can all be utilized within the same build: $40\mu m$, $80 \mu m$ and $40/80 \mu m$ SkinCore.

For high productivity needs a 80 μ m parameter set is included with a build rate more than double the 40 μ m parameter set. Both can be used separately for different parts or combined by using 40/80 μ m SkinCore with faster 80 μ m for the core of the part and higher quality 40 μ m building for the surface of the part with defined thickness. Sectioning parts in the vertical direction for different parameters is also possible.


System set-up	EOS M 300-4	
EOSPAR name	316L_040_080_Core M304	
Software requirements	EOSPRINT 2.11 or newer EOSYSTEM 2.15 or newer	
Powder part no.	9011-0032	
Recoater blade	EOS HSS blade	
Inert gas	Argon	
Sieve	63 μm	

Additional information Layer thickness 40 μm, 80 μm & 40/80 μm SkinCore 40 μm: 4 x 3.7mm³/s 80 μm: 4 x 8.4 mm³/s 40/80 μm Skin: between 4 x 3.7 - 8.4 mm³/s

Main Characteristics:

- Parameter set for fast and cost efficient production of EOS StainlessSteel 316L parts in small series or serial production
- 100% increase in productivity with 80 μm parameter compared to 316L 40 μm FlexLine parameter with only minor decrease in quality
- High part quality mechanical properties and surface with 40 µm parameter

^{*} Volume rate depends on the part dimensions and skin thickness.

fects Result		
Average defect percentage	40μm <0.06 % & 80μm <0.1 %	

Mechanical Properties as Manufactured¹

Typical properties as manufactured ISO 6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]
40 μm horizontal	580	670	35
40 μm vertical	510	610	40
80 μm horizontal	550	660	35
80 μm vertical	490	620	40

¹ Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of influencing factors and therefore, actual part properties achieved by the user may deviate from the information stated herein.

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application.

This powder has not been developed, tested or certified as a medical device according to Directive 93/42/EEC (MDD) or Regulation (EU) 2017/745 (MDR) and is not intended to be used as a medical device, in particular for the purposes specified in Art. 2 No. 1 MDR. Insofar as you intend to use the powder as raw material for the manufacture of pharmaceutical products or medical devices (e.g. as raw material which as a material must meet the requirements of Annex 1, Chapter II MDR), the responsibility and liability for all analyses, tests, evaluations, procedures, risk assessments, conformity assessments, approval and certification procedures as well as for all other official and regulatory measures required for this purpose shall lie solely with you both with regard to the pharmaceutical product and/or medical device manufactured by you and with regard to the properties, suitability, testing, evaluation, risk assessment, other requirements for use of the powder as raw material. This also applies to applications with food contact. In this respect, the limitations of liability pursuant to our General Terms and Conditions and the system sales or material contracts shall apply.

Status 02/2024

EOS is certified according to ISO 9001. EOS®, DMLS®, EOSPRINT® and EOSTATE® are registered trademarks of EOS GmbH Electro Optical Systems in some countries.

For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

Headquarters

www.eos.info

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

in EOS

X EOS3Dprinting

■ EOS3Dprinting

#responsiblemanufacturing

#futureisadditive

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS of North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

