

EOS NickelAlloy HAYNES® 282® Material Data Sheet

EOS NickelAlloy HAYNES® 282®

EOS NickelAlloy HAYNES® 282® is a precipitation strengthened nickel-base superalloy with a unique combination of high temperature strength, thermal stability, and fabricability. HAYNES® 282® alloy was developed for high temperature structural applications and is manufactured under license from Haynes International Inc.

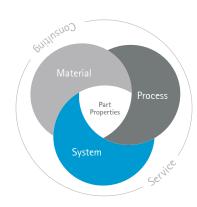
EOS NickelAlloy HAYNES® 282® is a nickel alloy powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

Main Characteristics:

- Excellent strength at high temperature
- Good corrosion and oxidation resistance
- Easily fabricated and excellent weldability

Typical Applications:

- Aerospace and rocket engine components
- Turbomachinery and gas turbine parts
- Energy industry components


The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.

EOS incorporates these TRLs into the following two categories:

- Premium products (TRL 7-9): offer highly validated data, proven capability and reproducible part properties.
- Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

Powder composition is compliant with AMS5951 Rev. A Section 3.1 and UNS N07208.

Powder chemical composition (wt.-%)

Element	Min.	Max.
Cr	18.5	20.5
Со	9.0	11.0
Мо	8.0	9.0
Ti	1.9	2.3
Al	1.38	1.65
С	0.04	0.08
В	0.003	0.010
Ni	Balance	
Mn		0.3
Si		0.15
W		0.5
Nb		0.2
Та		0.1
Fe		1.5
Cu		0.1
S		0.015
P		0.015

Powder particle size

Generic particle size distribution	20-55 μm

Heat Treatment

In as-built condition EOS NickelAlloy HAYNES® 282® has low strength and high ductility. Solution and aging heat treatments are required to produce the microstructure and strengthening phases for high temperature performance.

EOS has characterized two heat treatment options, which are described below. Heat treatment Option 1 is recommended for properties closest to wrought HAYNES® 282®.

Option 1: Recrystallization solution treatment + standard two-step aging

Option 2: Standard solution + standard two-step aging

Heat Treatment Option 1:

This heat treatment results in a recrystallized microstructure with larger and more equiaxed grains than are typically found in DMLS materials. The resulting mechanical properties are isotropic, with high tensile ductility and good creep-rupture strength.

Solution treatment:

Step 1: Hold at 1250 °C (2282 °F) for 2 hrs, followed by rapid cooling (110 °C/min (230 °F/min) or faster) to room temperature.

Aging treatment:

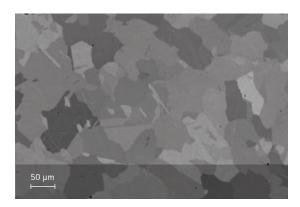
Step 2: Hold at 1010°C (1850°F) for 2 hrs, followed by cooling equivalent to air cooling (approx 20°C/min (68°F/min) or faster) to room temperature.

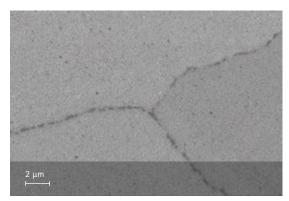
Step 3: Hold at 788°C (1450°F) for 8 hrs, followed by cooling equivalent to air cooling (approx 20°C/min (68°F/min) or faster).

Heat Treatment Option 2:

This heat treatment results in fine grains with high aspect ratio. Higher strength and more anisotropy may be expected relative to heat treatment Option 1.

Solution treatment:


Step 1: Hold at 1 135 °C (2 075 °F) for 2 hrs, followed by rapid cooling (110 °C/min (230 °F/min) or faster) to room temperature.

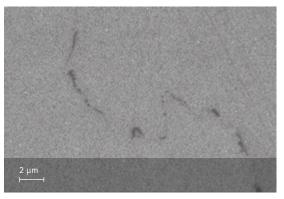

Aging treatment:

Step 2: Hold at 1010°C (1850°F) for 2 hrs, followed by cooling equivalent to air cooling (approx 20°C/min (68°F/min) or faster) to room temperature.

Step 3: Hold at 788°C (1450°F) for 8 hrs, followed by cooling equivalent to air cooling (approx 20°C/min (68°F/min) or faster).

Heat Treatment Option 1

Microstructure from Heat Treatment Option 1. Oxalic acid etch, section perpendicular to building direction.


Tensile properties¹

		Yield Strength		Ultimate Tensile Strength		Elongation 5D	
		MPa	ksi	MPa	ksi	%	
25°C (75°F)	Horizontal	771	111.8	1 229	178.2	23.6	
	Vertical	751	108.9	1 200	174.0	26.2	
760 °C (1 400 °F)	Horizontal	653	94.7	861	124.9	23.3	
	Vertical	634	91.9	852	123.6	29.2	

Tensile testing as per ISO 6892-1 with test parts printed on an EOS M 290.

Heat Treatment Option 2

Microstructure from Heat treatment Option 2. Oxalic acid etch, section perpendicular to building direction.

Tensile properties¹

		Yield Strength		Ultimate Ten	sile Strength	Elongation 5D	
		MPa	ksi	MPa	ksi	0/0	
25 °C (75 °F)	Horizontal	982	142.4	1 293	187.5	20.6	
	Vertical	937	135.9	1 169	169.5	25.9	
760 °C	Horizontal	737	106.9	831	120.5	9	
1 400 °F)	Vertical	754	109.3	821	119.1	23.5	

EOS NickelAlloy HAYNES® 282® for EOS M 290 | 40/80 μm

Process Information
Heat Treatment
Physical Part Properties
Mechanical Properties
Additional Data

EOS Nickel Alloy HAYNES® 282® for EOS M 290 | 40/80 μm

System set-up	EOS M 290				
EOS MaterialSet	HAYNES282_040_080_CoreM291_111				
Software requirements	EOSPRINT 2.10 or newer EOSYSTEM 2.14 or newer				
Powder part no.	9030-0010				
Recoater blade	EOS HSS Blade				
Nozzle	EOS Grid Nozzle				
Inert gas	Argon				
Sieve	63 µm				

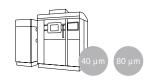
Additional information	
Layer thickness	40 μm, 80 μm
Volume rate	4.8 mm³/s (40 μm) 8.4 mm³/s (80 μm)

Heat Treatment

For information on the heat treatment procedures please refer to pages 4 and 5.

Physical Properties of Parts¹

Defects	Result
Porosity, 40 μm	0.02 - 0.05 %
Porosity, 80 μm	0.04 - 0.10 %
Density (ISO3369)	≥ 8.20 g/cm ³


Tensile properties – 40 μm
As manufactured

		Yield Strength		Ultimate Tensile Strength		Elongation 4D	Area Reduction
		MPa	ksi	MPa	ksi	%	%
25 °C (75 °F)	Horizontal	729	105.3	1010	146.5	33.9	60.3
	Vertical	623	90.3	915	132.7	36.3	57.9

Tensile properties – 40 μm Heat treated (Option 1)

	Yield S	trength	Ultimate Tensile Strength		Elongation 4D	Area Reduction
	MPa	ksi	MPa	ksi	%	%
Horizontal	726	105.3	1 207	175.1	26.6	28.0
Vertical	695	100.8	1 166	169.0	27.1	29.5
Horizontal	658	95.5	1029	149.3	10.0	11.6
Vertical	632	91.7	1039	15.6	16.0	17.5
Horizontal	622	90.3	838	121.5	27.8	30.0
Vertical	601	87.1	831	120.5	32.8	35.0
Horizontal	494	71.7	496	71.9	12.1	12.1
Vertical	491	71.2	498	72.2	18.9	20.0
Horizontal	337	48.9	339	49.2	11.5	12.3
Vertical	341	49.4	339	49.2	17.5	20.9
	Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal	Horizontal 726 Vertical 695 Horizontal 658 Vertical 632 Horizontal 622 Vertical 601 Horizontal 494 Vertical 491 Horizontal 337	Horizontal 726 105.3 Vertical 695 100.8 Horizontal 658 95.5 Vertical 632 91.7 Horizontal 622 90.3 Vertical 601 87.1 Horizontal 494 71.7 Vertical 491 71.2 Horizontal 337 48.9	MPa ksi MPa Horizontal 726 105.3 1207 Vertical 695 100.8 1166 Horizontal 658 95.5 1029 Vertical 632 91.7 1039 Horizontal 622 90.3 838 Vertical 601 87.1 831 Horizontal 494 71.7 496 Vertical 491 71.2 498 Horizontal 337 48.9 339	MPa ksi MPa ksi Horizontal 726 105.3 1207 175.1 Vertical 695 100.8 1166 169.0 Horizontal 658 95.5 1029 149.3 Vertical 632 91.7 1039 15.6 Horizontal 622 90.3 838 121.5 Vertical 601 87.1 831 120.5 Horizontal 494 71.7 496 71.9 Vertical 491 71.2 498 72.2 Horizontal 337 48.9 339 49.2	MPa ksi MPa ksi % Horizontal 726 105.3 1207 175.1 26.6 Vertical 695 100.8 1166 169.0 27.1 Horizontal 658 95.5 1029 149.3 10.0 Vertical 632 91.7 1039 15.6 16.0 Horizontal 622 90.3 838 121.5 27.8 Vertical 601 87.1 831 120.5 32.8 Horizontal 494 71.7 496 71.9 12.1 Vertical 491 71.2 498 72.2 18.9 Horizontal 337 48.9 339 49.2 11.5

Tensile testing as per ISO 6892-1

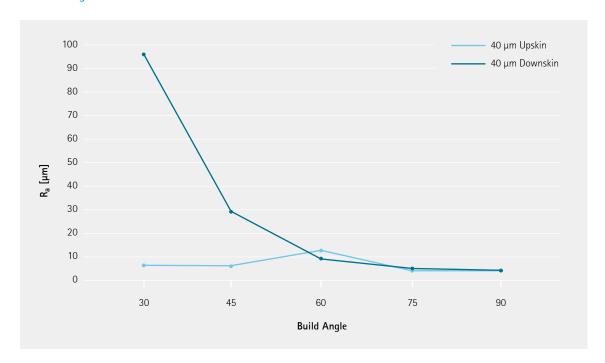
Tensile properties – 80 μm Heat treated (Option 1)

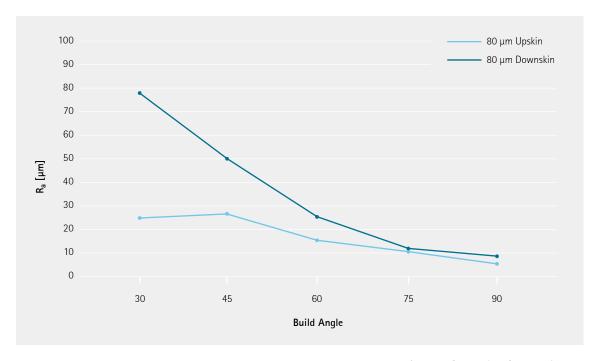
ngation 4D %	Area Reduction
%	%
26.5	25.5
25.6	24.0
19.8	20.1
17.0	20.1
26.8	29.0
30.0	31.5
13.6	16.8
14.0	16.5
9.6	13.9
14.8	16.5
	9.6

Tensile testing as per ISO 6892-1

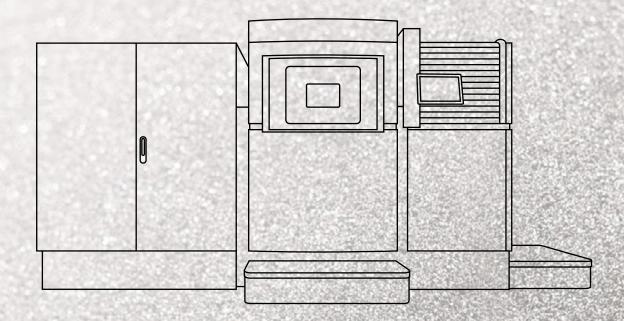
Stress rupture performance – 40 μm Heat treated (Option 1)

	Temperature		Stress		Time to rupture	Elongation 4D
	°C	°F	MPa	ksi	hrs	%
Horizontal	007	1700	00	10.0	200	11.5
Vertical	927	1700	89	12.9	334	27.8

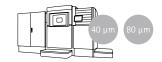

Stress rupture testing as per ASTM E139.


Additional data on mechanical properties after HIP or various aging heat treatments available on request.

Additional Data¹


Surface roughness

As-manufactured surface roughness with downskin exposure enabled.
Note: "NoDS" exposure sets may be used for smoother down-facing surfaces.
Surface roughness measurements according to ISO 25178.



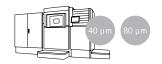
EOS NickelAlloy HAYNES® 282® for EOS M 400-4 | 40/80 μm

Process Information
Heat Treatment
Physical Part Properties
Mechanical Properties

EOS Nickel Alloy HAYNES® 282® for EOS M 400-4 | 40/80 μm

System set-up	EOS M 400-4
EOS MaterialSet	HAYNES282_040_080_CoreM404_101
Software requirements	EOSPRINT 2.10 or newer EOSYSTEM 2.14 or newer
Powder part no.	9030-0010
Recoater blade	EOS HSS Blade
Nozzle	EOS Standard Nozzle
Inert gas	Argon
Sieve	63 µm

Additional information	
Layer thickness	40 μm, 80 μm
Volume rate	up to 4x 4.8 mm³/s (40 μm) up to 4x 8.4 mm³/s (80 μm)


Heat Treatment

For information on the heat treatment procedures please refer to pages 4 and 5.

Physical Properties of Parts¹

Defects	Result
Porosity, 40 μm	0.02 - 0.06 %
Porosity, 80 μm	0.04 - 0.10 %
Density (ISO3369)	≥ 8.20 g/cm ³

Mechanical Properties¹

Tensile	prop	ertie	es –	40	μm
	_				

As manufactured

		Yield Strength		Ultimate Tensile Strength		Elongation 4D	Area Reduction
		MPa	ksi	MPa	ksi	%	%
25°C (75°F)	Horizontal	729	105.7	1010	146.5	33.9	60.3
	Vertical	623	90.3	916	132.8	36.3	57.9

Tensile properties – 40 μm

Heat treated (Option 1)

		Yield Strength		Ultimate Ten	sile Strength	Elongation 4D	Area Reduction	
		MPa	ksi	MPa	ksi	%	%	
25 °C (75 °F)	Horizontal	748	108.5	1 223	177.4	23.5	26.6	
	Vertical	715	103.7	1 179	171.0	27.5	33.0	

Tensile properties – 80 μm As manufactured

		Yield Strength		Ultimate Tensile Strength		Elongation 4D	Area Reduction	
		MPa	ksi	MPa	ksi	%	%	
25 °C (75 °F)	Horizontal	678	98.3	972	141.0	35.4	61.1	
	Vertical	585	84.8	910	132.0	39.7	61.9	

Tensile properties – 80 μm Heat treated (Option 1)

		Yield Strength		Ultimate Ten	sile Strength	Elongation 4D	Area Reduction
		MPa	ksi	MPa	ksi	%	0/0
25°C (75°F)	Horizontal	728	105.6	1 198	173.7	21.0	21.8
	Vertical	701	101.7	1 141	165.5	19.2	20.3

Tensile testing as per ISO 6892-1

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info

in EOS

■ EOSGmbH

© EOS.global

■ EOSGmbH

#ShapingFuture #ResponsibleManufacturing

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

¹ Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of influencing factors and therefore, actual part properties achieved by the user may deviate from the information stated herein.

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application. The achievement of certain part properties as well as the assessment of the suitability of this material for a specific purpose is the sole responsibility of the user.

Any information given herein is subject to change without notice.

Status 07/2022

 $EOS is certified according to ISO 9001. EOS \$, DMLS \$ \ and EOSPRINT \$ \ are registered trademarks of EOS GmbH Electro Optical Systems in some countries. For more information visit www.eos.info/trademarks.$

"HAYNES" and "282" are registered trademarks of Haynes International.

Cover: This image shows a possible application.

¹ Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application.

influencing factors and therefore, actual part properties achieved by the user

Status 07/2022

EOS is certified according to ISO 9001. EOS®, DMLS® and EOSPRINT® are registered trademarks of EOS GmbH Electro Optical Systems in some countries.

For more information visit www.eos.info/trademarks.

"HAYNES" and "282" are registered trademarks of Haynes International.

may deviate from the information stated herein.

Cover: This image shows a possible application.

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info

in EOS

y EOSGmbH

■ EOSGmbH

#responsiblemanufacturing
#futureisadditive

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

