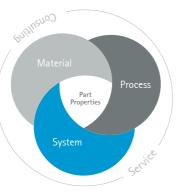
Metal Solutions

EOS StainlessSteel CX Material Data Sheet

EOS StainlessSteel CX Combines Corrosion Resistance with High Strength and Hardness

EOS StainlessSteel CX is a tooling grade steel characterized by having a good corrosion resistance combined with high strength and hardness. Parts built from EOS StainlessSteel CX can be machined, shot-peened and polished in as manufactured or heat treated state.

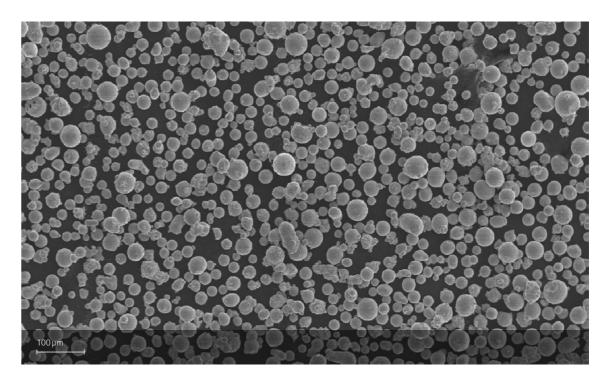
Main Characteristics:


Typical Applications:

- Stainless steel with excellent corrosion resistance combined with high strength and hardness
- The parts are easily machinable and offer excellent polishability
- → The parts offer excellent wear and fatigue resistance
- Plastic injection molding tools and tool parts for demanding applications
 Rubber molding tools and
- tool parts
- Molding tools and tool parts for corrosive plastics
- Other industrial applications where high strength and hardness are required

The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process – together simply described as the Quality Triangle. EOS focuses on delivering reproducible part properties for the customer.


All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

Element	Min.	Max.	
Fe	Balance		
Cr	11.00)	13.00
Ni	8.40		10.00
Mo	1.10		1.70
AI	1.20		2.00
Mn	-		0.40
Si	-		0.40
С	-		0.05

SEM image of EOS StainlessSteel CX powder.

vder particle size

neric particle size distribution

20 – 65 µm

Process Information

System set-up

EOS ParameterSet

Software requirements

EOSPAR name

Powder part no.

Recoater blade

Nozzle

Inert gas

Sieve

Heat Treatment

EOS StainlessSteel CX can be heat
treated to match various needs of
different applications. The two step
heat treatment can be performed
under vacuum or inert gas atmos-
phere. First step is solution annealing
to minimize amount of austenite in
the martensitic matrix. The needed
hardness and strength is achieved
through aging treatment where preci-
pitation hardening takes place.

Solution Annealing:

30 minutes at 850 °C (±10 °C) measured from the part followed by rapid air cooling to room temperature (below 32 °C). Cooling rate 20-60 °C/min. Reaching room temperature before starting aging treatment is required to achieve ci- desired microstructure.

Aging:

For peak hardness and strength 2 h at 525 °C (±10 °C) measured from the part followed by air cooling. Mechanical properties presented in this document achieved through this aging procedure.

If lower hardness and improved toughness is required aging temperature can be increased according to figure below.

Additional information

Layer thickness	30 μm	
Volume rate	3.2 mm³/s	
Min. wall thickness	Approx. 0.4 mm	
Typical dimensional change after HT (for parts ø 50 mm)	0.1 %	

EOS M 290

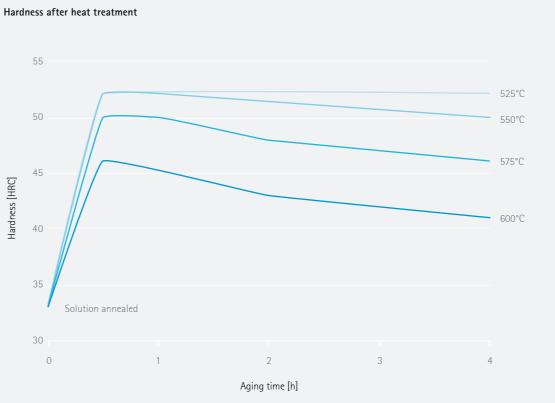
M 290 CX 030 V1

CX_030_HiPerM291_100

EOSPRINT 2.3 or newer

EOSYSTEM 2.8 or newer

9011-0037


EOS ceramic blade

EOS grid nozzle

Argon

63 µm

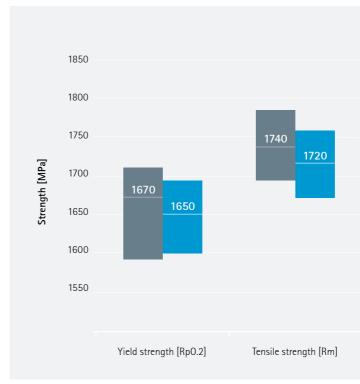
55

Chemical and Physical Properties of Parts

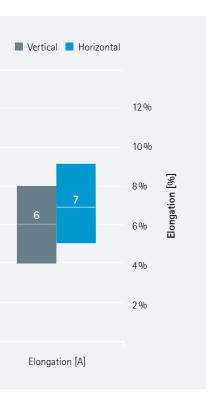
Mechanical Properties in Heat Treated State

Chemical composition of built parts is compliant to EOS StainlessSteel CX powder chemical composition.

Heat treated microstructure. Etching; ASTM E407-94


Defects	Result	Number of samples
Average defect percentage	0.03 %	65
Density, ISO3369	Result	Number of samples
Average density	7.69 g/cm ³	65

The areal defect percentage was determined from cross-cuts of the built parts using an optical microscope fitted with a camera and analysis software. The analysis was carried out for sample area of 15 x 15 mm. The defects were detected and analyzed with an image capture/ analysis software with an automatic histogram based filtering procedure on monochrome images. The density of the built specimen was measured according to ISO3369. Mechanical properties ISO6892-1


	Yield strength Rp0.2 [MPa]	Tensile strength Rm [MPa]
Vertical	1670	1740
Horizontal	1650	1720

Hardness in heat treated state ISO6508

Hardness, HRC	50
Number of samples	45

Elongation at break A [%]	Number of samples	
6	189	
7	162	

Additional Data

Additional Data

Fatigue Strength

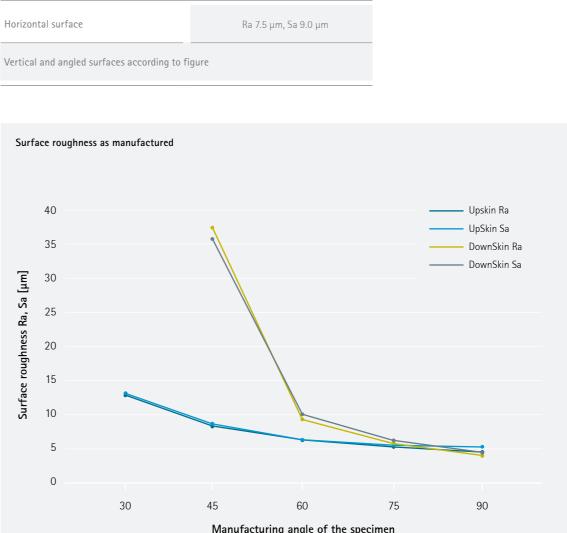
Fatigue strength determines a stress level where specimen fails at a defined number of stress cycles [ISO 12107]. Fatigue strength was estimated statistically according to ISO 12107.

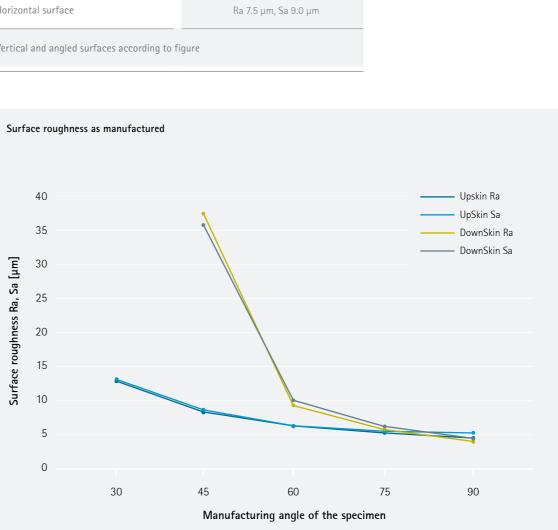
Testing was done according to ASTM E466. Fatigue results typically show large deviations due to the nature of the fatigue process [ISO 12107].

Corrosion Resistance Comparison of Tooling and Precipitation Hardening Steels

EOS Material	Hardness [HRC]	Corrosion resistance
EOS MaragingSteel MS1	55	-
EOS StainlessSteel CX	50	
EOS StainlessSteel PH1	43	••••
EOS StainlessSteel 17-4PH	42	

Corrosion Resistance Corrosion resistance comparison between EOS tooling and precipitation hardening steels based on potentiodynamic measurement data.


695


Coefficient of Thermal Expansion ASTM E228

Temperature	25 - 100 °C	25 – 200 °C	25 – 300 °C	25 - 400 °C
CTE	11.1 *10 ⁻⁶ /K	11.6 *10 ⁻⁶ /K	11.9 *10 ⁻⁶ /K	12.0 *10 ⁻⁶ /K

Fatigue strength at 1 x 10⁷ cycles in heat treated state ASTM E466

Fatigue strength, MPa

The surface quality was characterized by optical measurement method according to internal procedure. The 90 degree angle corresponds to vertical surface.

Surface Roughness

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 Fax +49 89 893 36-285

www.eos.info info@eos.info

Further EOS Offices

EOS France Phone +33 437 49 76 76

EOS Greater China Phone +86 21 602307 00

EOS India Phone +91 44 39 64 80 00

EOS Italy Phone +39 02 33 40 16 59

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 46 40

EOS of North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

Status 07/2019 (V2.0, CR681, 2019-05)

EOS is certified according to ISO 9001. EOS®, DMLS®, EOSPRINT® and EOSTATE® are registered trademarks of EOS GmbH in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

The quoted values refer to the use of this material with above specified type of EOS DMLS system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request. Any deviation from these standard settings may affect the measured properties. The data correspond to EOS knowledge and experience at the time of publication and they are subject to change without notice as part of EOS' continuous development and improvement processes. EOS does not warrant any properties or fitness for a specific purpose, unless explicitly agreed upon. This also applies regarding any rights of protection as well as laws and regulations.

