Material Data Sheet

EOS Cobalt-Chrome MP1

Uniting Strength, Wear and Corrosion Resistance, and Bio-compatibility

EOS CobaltChrome MP1

Parts printed with EOS CobaltChrome MP1 have good corrosion resistance and high mechanical properties even at elevated temperatures. EOS CobaltChrome MP1 is nickel-free and parts show a fine, uniform crystal grain structure. This combination is ideal for many applications in the aerospace and medical industries.

Main Characteristics:

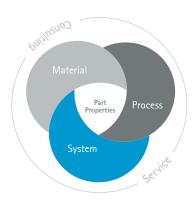
→ Corrosion resistance

→ Great elevated temperature performance

→ Nickel-free

Typical Applications:

 Various applications in aerospace and medical field


The EOS Quality Triangle

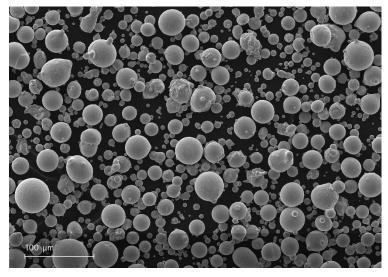
EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.

EOS incorporates these TRLs into the following two categories:

- Premium products (TRL 7-9): offer highly validated data, proven capability and reproducible part properties.
- Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

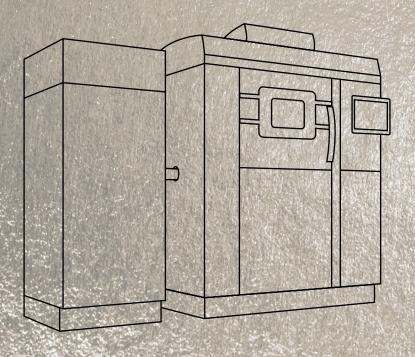
All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties


The chemical composition of EOS CobaltChrome MP1 is in accordance with standards ASTM F1537/F799, ASTM F75, ISO 5832-12 and ISO 5832-4.

Powder chemical composition (wt.-%)

Element	Min.	Max.
Со	60	65
Cr	27.00	30.00
Мо	5.00	7.00
W	-	0.20
Ni	-	0.10
Fe	-	0.75
Mn	-	1.00
Si	-	1.00
С	-	0.14


Powder particle size

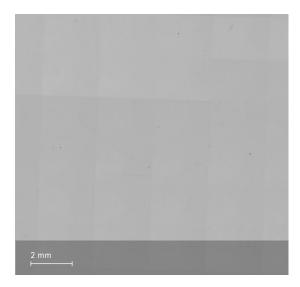
Generic particle size distribution	15 - 45 μm
------------------------------------	------------

SEM image of powder

EOS CobaltChrome MP1 for EOS M 290 | 40 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Additional Data

EOS CobaltChrome MP1 for EOS M 290 | 40 μm

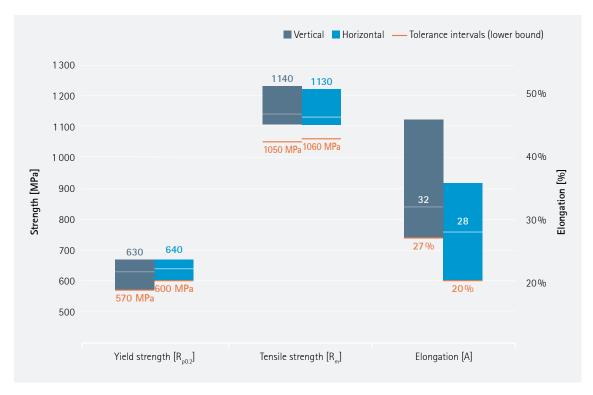

EOS M 290	
MP1_PerformanceM291	
EOSPPRINT 2.3 or newer EOSYSTEM 2.1 or newer	
9011-0012	
HSS	
EOS Standard Nozzle	
Nitrogen	
63 μm	

Additional information		
Layer thickness	40 μm	
Volume rate	4.2 mm³/s	
Minimum wall thickness	0.4 mm	

Chemical and Physical Properties of Parts¹

Chemical composition of printed parts matches the chemistry of EOS CobaltChrome MP1 powder.

Defects	Result
Average Defect Percentage	<0.1 %
Density, ISO3369	≥ 8.30 g/cm ³


Micrograph of a polished surface, as manufactured

Tensile properties heat treated ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Modulus of elasticity [GPa]
40 μm horizontal	640	1130	28	205
40 μm vertical	630	1140	32	208

Hardness	
Hardness, HRC	34
Number of samples	15

 $^{^*}$ T90: Tolerance intervals provide upper and lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferrable to other systems.

Tensile properties as manufactured ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Modulus of elasticity [GPa]
40 μm horizontal	1 060	1350	13	191
40 μm vertical	820	1220	23	170

Heat Treatment

Stress relieving & solution annealing heat treatment relaxes residual stresses, provides anisotropy and increases ductility of the material.

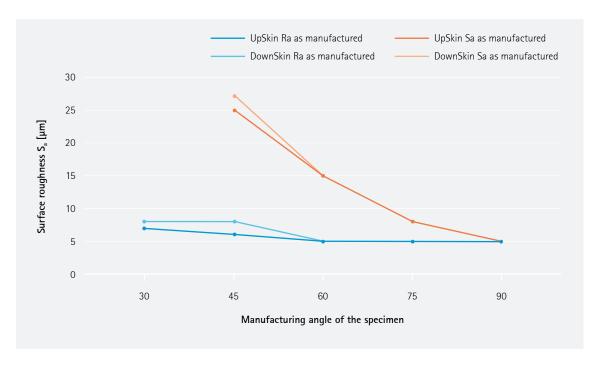
Steps:

Load parts in the cold furnace with Ar-atmosphere.

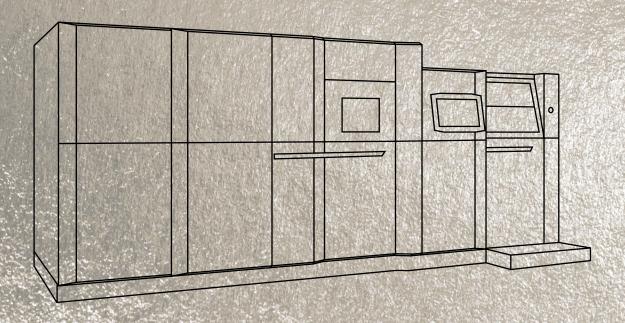
Heat up with heating rate of 10°C/min.

Soaking time: in temperature of $1150^{\circ}\text{C} \pm 15^{\circ}\text{C}$ (2102°F) for 6h (\pm 15min).

Quench immediately after soaking to room temperature water.


Additional Data¹

Fatigue


Fatigue Strength [MPa]	543

Rotating bar bending ISO-1143 2010, four point bending. Data analysis: applied staircase method (ISO-12107 2012), 7 samples, mean stress level of least occuring event, run out limit 10M cycles

Surface Roughness

EOS CobaltChrome MP1 for EOS M 300-4 | 40 μm

Process Information
Chemical and Physical Part Properties
Heat Treatment
Additional Data

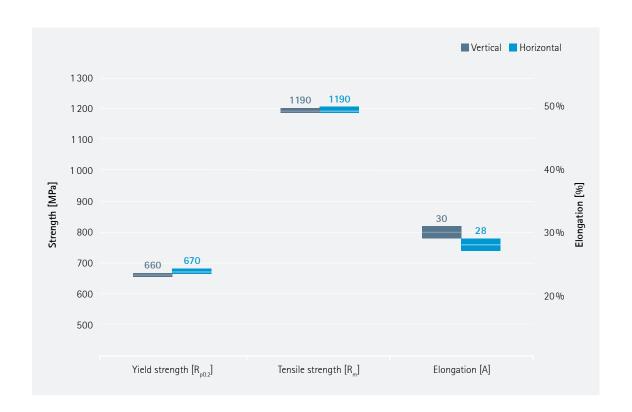
EOS CobaltChrome MP1 for EOS M 300–4 | 40 μm

EOS M 300-4	
MP1_040_CoreM304 1.XX	
EOSPRINT 2.13 or newer EOSYSTEM 2.17 or newer	
9011-0012	
HSS	
Nitrogen	
63 μm	

Additional information	
Layer thickness	40 μm
Volume rate	4.2 mm³/s
Minimum wall thickness	0.4 mm

Chemical and Physical Properties of Parts¹

40 µm


Chemical composition of printed parts matches the chemistry of EOS CobaltChrome MP1 powder.

Defects	Result
Average Defect Percentage	<0.1 %
Density, ISO3369	≥ 8.30 g/cm ³

Tensile properties ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Modulus of elasticity [GPa]
40 μm horizontal heat treated	670	1190	28	220
40 μm vertical heat treated	660	1190	30	215

Tensile properties as manufactured ISO6892-1

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Modulus of elasticity [GPa]
40 μm horizontal	1030	1270	8	190
40 μm vertical	820	1200	16	180

Heat Treatment

Stress relieving & solution annealing heat treatment relaxes residual stresses, provides anisotropy and increases ductility of the material.

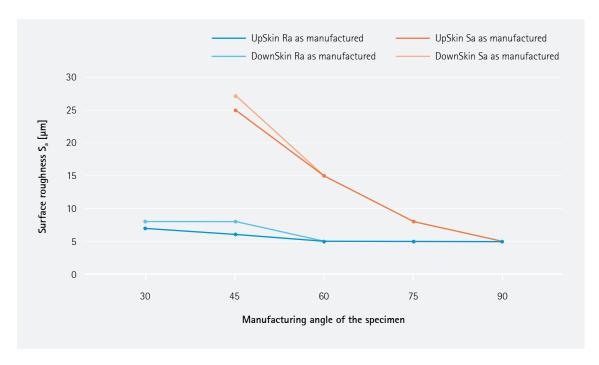
Steps:

Load parts in the cold furnace with Ar-atmosphere.

Heat up with heating rate of 10°C/min.

Soaking time: in temperature of 1150°C \pm 15°C (2102°F) for 6h (\pm 15min).

Quench immediately after soaking to room temperature water.


Additional Data¹

Fatigue

Fatigue Strength [MPa]	406

Applied staircase method according to ISO 1099 using stress ratio of -1, 15 samples. Run out limit 10M cycles. Heat treated.

Surface Roughness

¹ Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of influencing factors and therefore, actual part properties achieved by the user may deviate from the information stated herein.

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application. The achievement of certain part properties as well as the assessment of the suitability of this material for a specific purpose is the sole responsibility of the user.

Any information given herein is subject to change without notice.

Status 03/2024

EOS is certified according to ISO 9001. EOS® and EOSPRINT® are registered trademarks of EOS GmbH Electro Optical Systems in some countries.

For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

Headquarters

www.eos.info

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

in EOS

X EOS3Dprinting

D EOS3Dprinting

#responsiblemanufacturing

#futureisadditive

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS of North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

