Material Data Sheet

EOS Nickel Alloy K500

Versatile alloy for highly corrosive environments

EOS NickelAlloy K500

Main Characteristics:

Good mechanical strength also in elevated temperatures

→ Excellent corrosion resistance

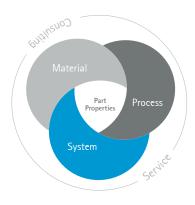
 Moderate conductivity (about two times the conductivity of commonly used nickel superalloys)

Typical Applications:

→ Aerospace

→ Marine

Industrial applications


The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.

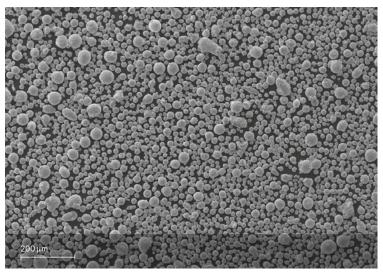
 $\ensuremath{\mathsf{EOS}}$ incorporates these TRLs into the following two categories:

- Premium products (TRL 7-9): offer highly validated data, proven capability and reproducible part properties.
- Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

Powder and built part compositions meet the chemical composition requirements of UNS N05500.


Powder chemical composition (wt.-%)

Element	Min.	Max.
Ni	63.0	
Cu	27.0	33.0
Al	2.30	3.15
Fe		2.0
Mn		1.5
Ti	0.35	0.85
Si		0.5
С		0.25
S		0.01

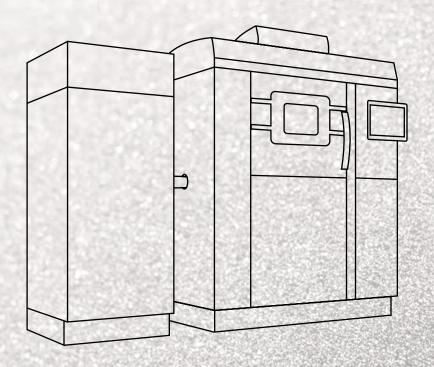
Powder particle size

Generic particle size distribution

15-75 μm

SEM image of powder

Heat Treatment


EOS NickelAlloy K500 is a precipitation strengthened alloy. The strength of the material can be tailored using heat treatment. An ageing heat treatment directly after printing is recommended for applications where strength is the primary concern.

Direct Aging

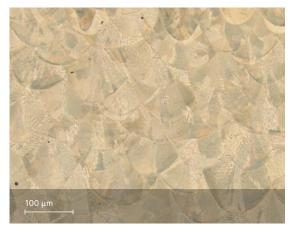
Hold at 595 °C measured from the part for 2 h in argon atmosphere, followed by slow air cooling.

Coefficient of thermal expansion						
Standard			ASTM E228			
Temperature	25-100 °C	25-200 °C	25-300 °C	25-400 °C	25-500 °C	25-600 °C
СТЕ	13.7*10 ⁻⁶ /K	14.4*10 ⁻⁶ /K	14.9*10 ⁻⁶ /K	15.2*10 ⁻⁶ /K	15.0*10 ⁻⁶ /K	15.1*10 ⁻⁶ /K

EOS NickelAlloy K500 for EOS M 290 | 60 μm

Process Information
Chemical and Physical Part Properties
Additional Data

EOS Nickel Alloy K500 for EOS M 290 | 60 μm



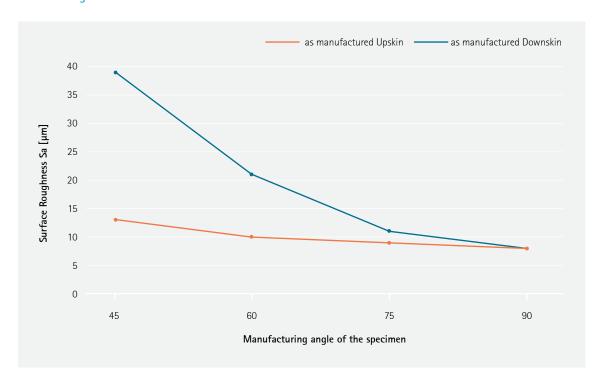
System set-up	EOS M 290		
EOSPAR name	K500_060_CoreM291_100		
Software requirements	EOSPRINT 2.13 or newer EOSYSTEM 2.17 or newer		
Powder part no.	9030-0019		
Recoater blade	HSS		
Nozzle	grid		
Inert gas	Argon		
Sieve	90 μm		
Additional information			
Layer thickness	60 µm		
Volume rate	6.0 mm³/s		

Chemical and Physical Properties of Parts

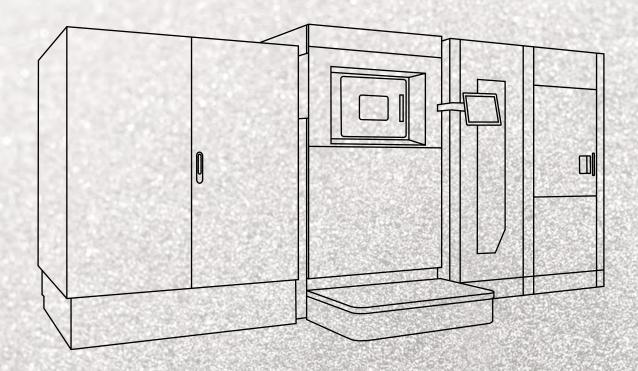
Defects	Result
Average defect percentage	0.04 %

As manufactured microstructure. Etched with ASTM E407 recipe #40.

Typcial mechanical properties


Heat treated	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]
As manufactured Horizontal	540	755	32
As manufactured Vertical	495	710	35
Heat treated Horizontal	840	1095	21
Heat treated Vertical	810	1030	27

Tensile testing as per ISO 6892-1.

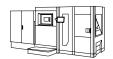


Additional Data

Surface Roughness

EOS NickelAlloy K500 for EOS M 400-4 | 60 μm

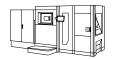
Process Information
Chemical and Physical Part Properties
Additional Data


EOS Nickel Alloy K500 for EOS M 400–4 | 60 μm

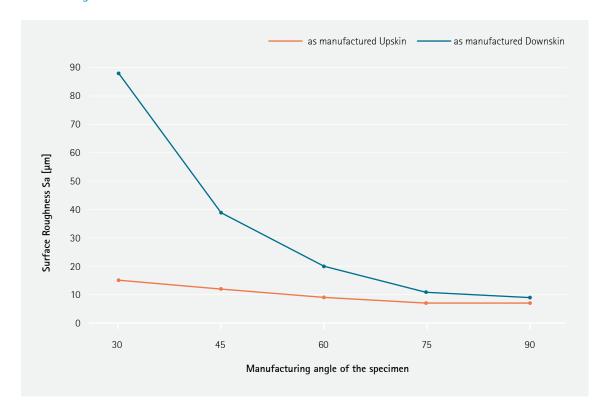
System set-up	EOS M 400-4		
EOSPAR name	K500_060_CoreM404_100		
Software requirements	EOSPRINT 2.13 or newer EOSYSTEM 2.17 or newer		
Powder part no.	9030-0019		
Recoater blade	HSS		
Nozzle	Aerospike		
Inert gas	Argon		
Sieve	90 μm		
Additional information			
Layer thickness	60 μm		
Volume rate	6.0 mm³/s		

Chemical and Physical Properties of Parts

Defects	Result
Average defect percentage	0.05 %


As manufactured microstructure. Etched with ASTM E407 recipe #40.

Typcial mechanical properties


Heat treated	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]
As manufactured Horizontal	535	755	33
As manufactured Vertical	475	705	38
Heat treated Horizontal	840	1085	22
Heat treated Vertical	785	1020	28

Tensile testing as per ISO 6892-1.

Additional Data

Surface Roughness

Status 01/2025

EOS is certified according to ISO 9001. EOS® and EOSPRINT® are registered trademarks of EOS GmbH in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

Important Note

This data sheet specifies the powder properties of the EOS powder type referenced above. If you purchase powder from EOS, EOS will deliver suchpowder in conformity with the version of this data sheet prevailing at the time of your order. If you purchase powder from any source other than EOS, EOS makes no warranties or representations with respect to powder properties to you whatsoever, and claims with respect to the quality or properties of EOS powder are available only against the seller of such powder in accordance with your agreement with the seller, not against EOS.—EOS data sheets are subject to change without notice. This data sheet does not constitute a guaranty or warranty of properties or fitness for a specific purpose and may not be relied upon as such.

Part properties stated above are provided for information purposes only and EOS makes no representation or warranty whatsoever, and disclaims any liability, with respect to actual part properties achieved with this material. Part properties are subject to variation and dependent on factors such as system parameters, process and test geometries. Therefore actual part properties may deviate and users of this material are exclusively responsible to determine its suitability for the intended use. The part properties stated above have been determined by testing this material with above specified type of EOS Laser Powder Bed Fusion system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request.

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info
in EOS

X EOS3Dprinting

DEOS3Dprinting

#responsiblemanufacturing

Further Offices

#futureisadditive

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS of North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

